## **High Lift Prediction Workshop Results**

Jan B. Vos
CFS Engineering
PSE-A
1015 Lausanne
Switzerland

& Alain Gehri RUAG Aviation

6032 Emmen Switzerland



#### **Contents**

- Introduction
- CFD code used + solver parameters
- Calculations made & grids used
- Results
- Conclusions



#### **Introduction – RUAG Aviation – Aerodynamics Center**

- Wind Tunnel Tests
   Aviation- and
   Automotive Industry
- Instrumentation / Model D&M

 CFD & Flight Physics Engineering















#### Introduction – CFS Engineering



#### Introduction – why do we participate?

- To obtain a better understanding of the physics of high-lift flows
- To better understand the difficulties in simulating high lift flows
- To test our CFD code for this application
- Good experience from DPW4 workshop



#### CFD code used - NSMB

NSMB is a CFD code using multi block structured grids

Developed since 1992 in an international consortium with various industrial partners (Airbus & SAAB Military Aircraft until 2003, RUAG Aviation, Astrium Space Technologies, CFS Engineering) and academic partners in France, Germany and Switzerland.

NSMB includes all features you can expect from a modern CFD code in terms of grid flexibility, space discretization schemes, time integration and convergence acceleration methods, parallel computing capabilities etc.



#### **NSMB** parameter settings

All calculations were made using the following parameters

Space discretization: 4<sup>th</sup> order central scheme with artificial dissipation

Time integration: LU-SGS, CFL increased from 0.1 to 1.e12

Turbulence model: k-ω Menter Shear Stress (2 calculations using Spalart)

Convergence judged by residuals, convergence of aerodynamic coefficients and comparisons of solutions.



#### Grids used (1)

|         | Coarse    |           | Medium    |           | Fine      |           |
|---------|-----------|-----------|-----------|-----------|-----------|-----------|
|         | # vol (M) | # surf(k) | # vol (M) | # surf(k) | # vol (M) | # surf(k) |
| gridA   | 2.51      | 43.0      | 20.11     | 159.1     |           |           |
| gridC   | 6.14      | 126.0     | 11.16     | 190.0     | 41.44     | 428.4     |
| cfse-ra | 5.99      | 49.2      | 19.96     | 184.9     | 47.90     | 379.5     |

Polars computed only on medium cfse-ra grid gridA and gridC were used for configuration 1, alpha=13 + 28 Not possible to make a calculation on fine gridC



#### Grids used (2) – medium gridA



Boundary layer captured on slat via O-grid around slat + fuselage



# Grids used (3) – medium gridC





## Grids used (4) – medium cfse-ra grid





# Grids used (5) – medium gridA





## Grids used (6) – medium gridC





### Grids used (7) – medium cfse-ra grid





## Grids used (8) – medium gridA





## Grids used (9) – medium gridC





## Grids used (10) – medium cfse-ra grid





## Grids used (11) – gridA-cfse-ra grid





## Grids used (12) – gridC-cfse-ra grid



## **Results – Polar Config8**



#### Results – Polar Config1 – all results





#### Results – Polar Config1 – Slat contribution





#### Results – Polar Config1 – wing contribution





### Results – Polar Config1 – flap contribution





### Results – Polar Config1 – fuselage contribution





#### Results – Config1 forces history $\alpha$ =28





### Results – α=28 Cp k-w MSS vs Spalart





#### Results – $\alpha$ =28 - Cp Spalart – Cp k w MSS





#### Results – α=28 CFx k-w MSS vs Spalart





#### **Results – α=28 Different grids - U-velocity**





gridA med

gridC med





cfse-ra grid med **CFS** Engineering

cfse-ra grid fine RUAG

#### **Results – α=28 Different grids - CFx**



#### **Conclusions**

CFD calculations for the high lift configurations were made

The computed results depend on

- 1. The grid used
- 2. The turbulence modeling approach

We still do not understand why our medium grid seems to give less good results than the coarse grid for  $\alpha$ =28



# Questions?

Thank you for your attention.

